Geologic History of Fluid Flow through the Arbuckle Group

Robert H. Goldstein and Bradley D. King KICC, University of Kansas, Department of Geology

Purpose

- Diagenetic study of the Arbuckle Group
- Petrographic, fluid inclusion, and geochemical characteristics to characterize evolution of ancient fluid-flow systems
- Repeatedly not a closed system; given close to half a billion years of geologic history, there has been a complex and fascinating history of fluid flow driven by sea level change, climate, and tectonics

Study Area

Kansas Geologic History

- Basal carbonates including unconformities and minor evaporites→shale-rich section
 →evaporite-rich section
- Only moderate burial, conservatively no more than 60-70 °C burial heating
- Deep basins to the south originated as foreland basins in the Mississippian-Pennsylvanian
- Late Mississippian, Pennsylvanian, and Early Permian deformation associated with Ouachita-Marathon orogeny
- Late Cretaceous-Neogene structural reactivation associated with Laramide Orogeny

Arbuckle Group Ideal Paragenesis

Arbuckle Group Paragenesis

Diagenetic Events	Early Stage	Late Stage
1. Original Deposition → 2-3-4. Early Dissolution		
2-3-4. Replacement Dolomite (RD) 2-3-4. Anhydrite (A)		
5. Early Dolomite Cements (EDC) 6. Silicification (RC)		
7. Chalcedony (Ch) 8. Karsting (Carbonate Dissolution)		
9. Brecciation and collapse features 10-11. Middle Dolomite Cements (MDC)		
10-11. Pyrite (P) 12. Megaquartz 1 (MQ1)		
13. Internal Sediment (IS) 14-15. Stylolitization & emanating fractures		
14-15. Fracturing (F) 16-17. Silica Dissolution		
16-17. Carbonate Dissolution 18. Megaquartz Cement 2 (MQ2)		
19. Baroque Dolomite (BD) 20. Petroleum Migration		
21-22-23. Galena (G) 21-22-23. Sphalerite (S)		
21-22-23. Calcite Cement (CC)		

(After King and Goldstein)

Early Paragenesis

Early Paragenesis

Karst dissolution caused by multiple events of Ordovician meteoric water infiltration

Early Paragenesis

Ordovician sinking of residual evaporite brines causes dolomitization

Saller, 2004

<u>Late-Stage Paragenesis</u> associated with fractures, after stylolitization and the same from Arbuckle up through Pennsylvanian Strata

Late Mineral Phases – Hydrocarbons and Hot Brine

Fluid Inclusion Data - Hydrothermal

 Homogenization temperatures rise and fall through time - pulsed fluid flow

Five-Stage Record of Late Fluids

Stage 1 - Hydrothermal Flow

Stage 1 – Advective Flow of Connate Fluids

Between Stages 1 and 2

- Mostly less than about 50°C
- Calculated fluid composition $\delta^{18}O$ of -1 to +4 % $_{VSMOW}$
- Origin must be related to brine reflux when Permian evaporites were being deposited

Between Stages 1 and 2 – Brine Reflux

Stage 2 - Hydrothermal Flow Mixing with Ambient Temperature Fluid

Stage 2 - Hydrothermal Flow Mixing with Ambient Temperature Fluid

- Initiation of quartz overgrowth in Simpson Group Sandstone and continued qtz overgrowth in Mississippian
- Higher temperature in Mississippian than Ordovician but ranging from ambient burial to hydrothermal
- Correlation between high temperature and highest salinity

Stage 3 - Hydrothermal Flow

Stage 3 - Thermal Structure - Stage 3 Regional Fluid Flow

Depth in Feet Relative to Top of Mississippiar

Stages 1-3 – Warmer fluids at top of Aquifer and Leakage into Confining Unit

Advective Fluid Flow – Stage 3

Stage 4 – Preceded by Fracturing and Dissolution

Stratigraphic Unit	Diagenetic Events	Late Stage
Middle Ordovician Simpson Group	1-2. Fracturing (SF1) 1-2. Dissolution	
	3. Megaquartz cement (SMQ)4. Baroque dolomite (SBD)	
	5. Fracturing (SF2)	
Stratigraphic Unit	Diagenetic Events	Late Stage
Mississippian (Upper and Lower Series)	Dissolution Brecciation	
	Megaquartz cement (MMQ) 4-5-6-7. Chalcedony (MCh)	
	4-5-6-7. Baroque dolomite (MBD) 4-5-6-7. Petroleum migration	
	4-5-6-7. Fracturing (MF)	
	8-9. Calcite cement (MCC) 8-9. Anhydrite (MA)	
Stratigraphic Unit	Diagenetic Events	Late Stage
Middle Pennsylvanian Cherokee Group	Dissolution Baroque dolomite (PBD)	
	2-3 Petroleum Migration	
	4. Fracturing (PF)	
	5. Calcite cement (PCC)	

Fracturing opens up system and is followed by dissolution

Stage 4 - Hydrothermal Flow

Stage 4 - Calcite 87Sr/86Sr

Stage 4 - Fracture-Controlled Hydrothermal Fluid Flow and Calcite-Laramide?

Stage 5 – Extant Conditions

Stage 5 – Extant Conditions

Conclusions

- Multiple events of low-temperature meteoric water infiltration in Ordovician
- Ordovician events of brine reflux and dolomitization
- Three stages of regional advective hydrothermal flow
 - Mississippian-to-Ordovician section acted as a regional aquifer and Pennsylvanian section acted as a leaky confining unit; lower density warmer fluids at the top of the aquifer
- A fourth stage of hydrothermal fluid flow, possible local fault pumping
- A modern fluid system with connection to the outcrop
- Implications are that under certain conditions, the Arbuckle Group has remained open to both lateral flow and cross-formational flow